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RADIANT HEAT TRANSFER TO ABSORBING GASES ENCLOSED IN A CIRCULAR
PIPE WITH CONDUCTION, GAS FLOW, AND INTERNAL
HEAT GENERATION

By TroMas H. EINsTEIN

SUMMARY

A two-dimensional analysis is presented for deter-
mining the heat transfer to a gray uniformly ab-
sorbing gas enclosed in a black circular pipe under
the combined influence of radiation, gas flow through
the pipe, and thermal conduction in the gas. The
analysis also takes into account the presence of
distributed energy sources in the gas.

Specific results are obtained for a pipe with a
length to diameter ratio of & and for a range of gas
opacity from 1.0 to 10.0. The ends of the pipe
consist of porous black plugs that simulate the
radiation environment external to the pipe but
permit flow through the pipe. All the resulls are
presented in dimensionless parameters for generality.

It was found that when an absorbing gas flowing
through a pipe is heated only by radiation emitted
from tisothermal walls of the pipe, the heat trans-
mitted to the gas goes through a maximum as the
opacity of the gas is increased.

Results are also presented for heat transfer to a
Aowing gas and the pipe walls by radiation emitted
from a heat-generating gaseous core in the center of
the pipe. For these specific results, the radius of
the heat-generating cylindrical gaseous core is 0.2
of the pipe radius. It is shown that the percentage
of heat generated that is radiated to the wall can be
made negligibly small if both the gas opacity and the
gas flow rate in the annulus surrounding the core
are made sufficiently high.

Finally, results are presented for one-dimensional
radial radiant heat transfer from a heat-generating
gaseous core through a stationary absorbing gas to
the walls of the pipe. These results are compared
with a solution for the emissive power distribution
in the gas obtained by using the Rosseland diffusion

approrimation with a jump boundary condition,
and good agreement between the two methods is

obtained.
INTRODUCTION

Recently, there has been a significant increase
of interest in heat-transfer problems associated
with thermal-radiation-absorbing gases. Nearly
all gases, when in the dissociated or ionized state,
absorb radiation to some extent. Many gases,
such as water vapor and carbon dioxide, are even
fair absorbers in their normal molecular states
at moderate temperatures. Even gases that do
not absorb radiation can be made into effective
absorbers if they are seeded with microscopic
dust particles or powders such as carbon black.
The recent surge of interest in this area is related
to the current importance of high-temperature
problems associated with space-vehicle reentry,
heat transfer from electric arcs and other high-
temperature plasmas, and energy transport in
in gaseous nuclear reactors.

Reference 1 deals with the interaction be-
tween radiation and thermal conduction and with
radiant heat transfer from constant-temperature
surfaces to flowing radiation-absorbing gases.
Two-dimensional results were obtained for the
case of a finite length channel formed between
two semi-infinite parallel flat plates. That geom-
etry was chosen in order to simplify the analysis
and presentation of results in that report as much
as possible. Although many interesting and
important generalized results were obtained with
regard to the effects of flow on radiant transfer
to an absorbing gas and the interaction between
radiation and conduction, the semi-infinite par-
allel-plate geometry of that report made interest
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in"the specific results obtained therein somewhat
academic.

It is the purpose of this report to apply the
method of analysis used in reference 1 to a geom-
etry of more practical interest, a circular pipe
of finite length, and to present results for radiant
heat transfer to absorbing gases enclosed in such
a pipe. Typical problems to which this analysis
might be applied are radiant heating of an absorb-
ing gas flowing through a heated pipe, the heating
of the walls of a pipe by an enclosed plasma jet
or electric arc, or heat transfer in a coaxial-flow
gaseous reactor.

Previous work in the analysis of radiant heat
transfer to absorbing gases in a cylindrical pipe
is described in references 2 and 3. The analysis
of reference 2 is for a gray gas of uniform absorptiv-
ity flowing in a black cylindrical pipe. Some
of the assumptions used in the analysis, however,
render the results valid only when reemission of
radiation by the gas may be neglected. Rel-
erence 3 applies the method of analysis of ref-
erence 4 to the heating of an absorbing medium
in a cylindrical pipe and treats the case of a
nongray gas enclosed in a pipe that has a partly
reflecting (gray) surface. The analysis, however,
does not allow for radial temperature gradients
in the medium. Also, although the method of
analysis is presented, no results are given.

The two-dimensional analysis for a cylindrical
pipe presented in this report follows along the
same lines as that given in reference 1. For the
sake of simplicity, the present analysis assumes
that conditions in the pipe are axisymmetric, and
it is limited to a gray gas of uniform absorptiv-
ity enclosed in a cylinder whose interior surfaces
are black. The analysis, however, could be
extended to cover nongray gases by applying
the method of reference 4, in which a nongray
gas 1s approximated by a mixture of gray gases.

Results are presented herein for (1) heating a
flowing gas by radiation from a constant tempera-
ture pipe wall, and (2) for heating the gas and the
interior surface of the pipe by radiation from
energy sources distributed uniformly in a cylin-
drical inner concentric core of the gas, the diam-
eter of which is 0.2 that of the pipe. All results

are presented in terms of dimensionless parame-
ters to obtain maximum generality.

ANALYSIS

A two-dimensional analysis of radiant heat
transfer is presented for a gray gas of uniform
absorptivity enclosed in a cylindrical pipe of
finite length as shown in figure 1. The interior
surface of the pipe is black, and conditions at the

Gas flow,

—Porous end surface

Ficure 1.—Cylindrical pipe containing
radiation-absorbing gas.

ends of the pipe are represented by porous black
surfaces. These pseudo end surfaces are assumed
to be black in order to simulate the radiant prop-
erties of the environment exterior to the pipe in
calculating the radiant interchange between this
environment and the gas and surfaces in the in-
terior of the pipe; they are assumed porous to
allow for the flow of gas through the ends of the
pipe. The analysis takes into account not only
the radiant interchange in the pipe but also the
simultaneous effects of gas flow and thermal
conduction.

For the purpose of simplicity, however, as is
often done in convection heat-transfer problems,
the axial component of conduction is neglected,
which leaves only the radial component to be
considered. Allowance is also made for distributed
energy sources in the gas. The conditions in the
pipe are also assumed to be axisymmetric. A
rigorous treatment of this problem requires the
solution of the following two-dimensional integro-
differential equation, which represents the heat
balance on an infinitesimal volume of gas dV.
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located at position 7, in the interior of the pipe:

- —%g o | - > o

Stk f f oTH(P)g(r—ro)dA+g" (7 (1)

where
- . . -
q'"(r,) heat generation in the gas per unit volume at r,
- . . . - -
4keT(r,) radiant energy emitted per unit volume at r=r,
-
oT()| . ) S
Ge, o ]73 rate of enthalpy increase of the flowing gas at r=r,
o oT(r
! -5 o
%_57; [p 0 bE)r) :—> - net conduction heat transfer per unit volume at r=r,
17T=Ts

N
radiation absorbed per unit volume at r, from emission given off by the rest
of the gas in the eylinder

k f f f T (N f(F—ro)de

k f f TH M g(r—r)dA

N
radiation absorbed per unit volume at r, from emission of pipe wall and end
surfaces

(All symbols are defined in appendix A.)
Unfortunately, even in the case where thermal
conduction and flow are absent, equation (1) is
not easily solved for a cylindrical geometry, though
solutions have been obtained for a spherical
geometry (ref. 5) and infinite parallel flat plates
(ref. 6). Consequently, the only feasible way of
obtaining a solution to equation (1) for a cylin-
drical geometry, even in the absence of conduc-
tion or flow, is by resorting to a scheme such as
that described in reference 1, in which the interior
of the eylinder is divided into a finite number of
zones, and the two-dimensional integrodifferential
equation is approximated by a system of algebraic
equations. Thus, in the present situation, the
interior of the cylinder is broken up into 50 gas-
ring zones of rectangular cross section, 10 zones

Ficure 2.—Interior of pipe illustrating division of gas into
toroidal zones of rectangular cross section.

larly divided into surface zones whose boundaries

axially and 5 zones radially, as shown in figure 2.
The cross sections of all these gas zones are iden-
tical, and the zones themselves are toroidal rings
of rectangular cross section except for the inner-
most zones, which are solid cylinders whose radii
are equal to 0.2 of the radius of the pipe. Figure
2 is a cutaway view of the pipe that shows the
division of the interior into the zones, as described
previously, and the shape of each zone. The
cylindrical and end surfaces of the pipe are simi-

correspond with those of the adjoining gas zones
described previously. Thus, the ecylindrical sur-
face is divided into ten equal size surface zones of
cylindrical shape, of which the length of eachis 0.1
that of the whole pipe. Similarly, each of the
end surfaces is divided into five radial surface
zones of annular shape, the width of which is 0.2
of the pipe radius. Again, the innermost surface
zone on the end degenerates into a circle whose
radius is 0.2 of the pipe radius.
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APPLICATION OF HEAT-BALANCE EQUATIONS
AT ZONE CENTERS

Given the preceding division of the gas in the
pipe into 50 zones, the solution to equation (1)
may be approximated by writing heat-balance
equations on infinitesimal volumes located at the
centers of the cross sections of each of the 50 gas
zones. The circumferential position in the zones of
these infinitesimal volumes is immaterial, since
conditions in the pipe are assumed to be axisym-
metric. The problem now to be solved is to
determine the temperature distribution in the gas
and the heat flux to the surfaces for a given surface
temperature distribution and for given distribu-
tion of energy sources in the gas. The surface
temperatures are specified for each of the surface
zones on the cylindrical wall and both ends. The
temperature of each surface zone is assumed to be
uniform over that zone but may vary from one
surface zone to the next. Thus, the temperature
distribution on a surface is approximated by a
stepwise temperature distribution over the zones
comprising that surface. The heat-generation rate
per unit volume is specified for each of the gas
zones (this quantity will in many cases be zero for
some or all of the zones). Again, this power
density is assumed to be uniform over any given
zone so that the total power produced by the
sources in that gas zone 1s obtained by multiplying
the power density by the zone volume. Thus, the
distribution of energy sources in the gas is approxi-
mated by the stepwise variation of power genera-
tion over the gas zones.

Again, the problem to be solved is: Given a
temperature distribution on the surface bounda-
ries of the pipe and a distribution of internal
energy sources in the gas, find the resulting tem-
perature distribution in the gas and the heat
transfer between the gas and the surfaces. As
mentioned before, an approximation to the so-
lution of the problem is obtained by applying
equation (1) to the heat balances on the infinitesi-
mal volume elements at the centers of the cross
sections of each of the gas zones. In order to
replace the integrodifferential equation with
algebraic equations, it becomes necessary to
approximate the derivatives in equation (1) with
algebraic difference quotients in terms of the gas-
zone-center temperatures and the integrals in
terms of finite sums that are algebraic functions
of the gas-zone-center temperatures. Since there

are 50 gas zones, there are 50 separate heat-
balance equations and also 50 unknowns, namely,
the temperatures at the centers of the cross sec-
tions of the gas zones. The algebraic-difference-
quotient approximations for the derivatives are
obvious. The presentation of the integrals in
terms of the unknown gas-zone-center temper-
atures is more involved and is the subject of the
following paragraphs. In any case, since the
regions of integration are divided into zones, the
integrals over the pipe in equation (1) may be
exactly represented by obtaining the integrals for
each zone and then summing these zone integrals
over all the zones in the pipe.

Each of the 50 zones is labeled by a dual sub-
seript (4, 7), where ¢ is the position along the
length of the pipe and j represents the radial
position from the center of the pipe to the wall.
Figure 3 gives the cross section of the pipe along
the centerline showing the gas zone cross sections
and describing the manner of labeling given
previously. Consequently, the heat-balance equa-
tion on an infinitesimal volume element at the
center of the (i, 7)™ zone may be written as follows:

Ti—i—l.j— i—-1,7

akoT +Ge, ~H1L
- (Tz ]+1+T1 L 2Ti.f>__L (Ti.j+1_Ti.j—l)
P 2Ap
- - -
A DIPD f f f T4, ) f o n— 0 )0

> 0TS, f Gulrm— By )aA

2 5
k z=21 E oT%, ffge(;n_ﬁi,j)dA

for 1=1-10; j=1-5 (2)

Obviously, the form of the derivative approx-
imations, which appear in equation (2), needs to
be modified along the surface boundary of the

5
pipe for ¢=1, 10 or j=>5. Here, R;; represents
the position vector at the center of the cross

N
section of the (3, j)“‘ gas zone, 7, , is the position
vector of a point in the (m, n)™ gas zone, and

rm and r,, the position vectors of points on the
m®™ wall-surface zone or »n™ end-surface zone,
respectively. The subscript ! in the last sum-
mation denotes the two end surfaces of the pipe.
As mentioned earlier, the surface temperatures




RADIANT HEAT TRANSFER TO ABSORBING GASES ENCLOSED IN A CIRCULAR PIPE 5

T ——— ‘ I
5 ! waoll surface | | !
e et ———
4.-—End | j : ; End |
—surface — * surface-
n3 ! =1, je1 \
2 i "
._.._4; . + ;
I ! l : i
— — : g——
[ : L
2 i iy
: }
n3 : i -1,
5! : ' Wall surface
1 2 3 4 5 6 7 8 9 10

m

Ficure 3.—Cross section of circular pipe illustrating divi-
sion into 50 toroidal ring gas zones, 10 wall-surface
zones, and 5 end-surface zones on each end.

on the pipe, which are given, are assumed to be
constant over each of the surface zones; therefore,
they may be taken outside the integral sign in
the integral over each zone, as illustrated in the
last two terms of equation (2). The temperatures
n the gas zones, however, are not assumed to be
uniformm over each zone, as will be discussed
shortly and, thus, for the time being will ren—J)ain

-

inside the integral sign. The factor f(r,. .—R; ;)
is the exchange factor between a ring of gas of
infinitesimal cross section and volume dv through

-
position 7, , in the cross section of the (m, n)®
gas zone and the infinitesimal volume located at
-
position 2, ; at the center of the cross section of
the (i, 7)™ gas zone, on which the energy balance
- -
1s being taken. Similarly, the factor g.(r.—R, ;)
is the exchange factor between a surface ring of
infinitesimal width and area dA on the cylindrical
-
wall at position r, on the wall-surface zone and
-
the infinitesimal gas volume at position R;,.
- -
Finally, g.(r.—R,; is the exchange factor be-
tween an annular surface ring of infinitesimal
-
width and area dA at position r, on the n®
end-surface zone and the infinitesimal gas volume
-

at position R;; A thorough derivation and a
description of these three exchange factors are
given in appendix B.

686-791—63——2

ALLOW ANCE FOR VARIATION OF TEMPERATURE IN GAS
ZONES

As mentioned earlier, the temperatures in a gas
zone are not assumed to be uniform over the zone.
In reality, of course, the variation of gas tempera-
ture in the pipe will be continuous in each zone
and from one zone to another. Thus, it is desirable
to find a relation, in terms of the unknown zone-
center temperatures, that will approximate the
actual variation of gas temperature in the zones.
The simplest approximation is to assume that the
variation of emissive power in each zone is a
two-dimensional linear function. Let the rec-
tangular cross section of each zone be described
by a rectangular coordinate system (¢ 7) whose
origin is at the center of the zone cross section.
Since the length of the cross section is L/10 and
the width is R/5, the cross section is described
by —(L/20) <¢<(L/20) and — (R/10) <9< (R/10).
The coordinate system (£9) in the (m,n)®
zone is oriented so that the positive direction is
toward I?,-_ 5, the point in the (7,7)™ zone that is
being irradiated by the (m,n)®™ zone. The two-
dimensional variation of emissive power in the
cross section of the (m, n)™ zone may then be given

by
Ts(,m) =T o+ (T4 11 a—T% ) f

+ (T4 aer—T% ) nl 3)

where £, and 5, are the length and width of the
zone cross sections, respectively, and T »
and T, .., are the temperatures at the centers of
zones adjacent to the (m,n)® zone. The two-
dimensional function given by equation (3)
completely defines the temperature field through-
out each of the toroidal gas zones, since the
temperatures vary only in the cross sections of
the zones and are otherwise circumferentially
uniform because of the axisymmetry of the
problem. Equation (3) is substituted for the
emissive power T in that integral of equation (2)
which represents the radiation interchange between
the surrounding gas zones and the center of the
(2, 7)™ zone and is given as

[[[ o Gn. = F a0 )
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Thus, this exchange integral may be expressed
in terms of the unknown temperatures at the
centers of the (m,n)™ zone and two adjacent
zones, and these temperatures may then be taken
outside the integral sign. The details of eval-
uating the integral (eq. (4)) in terms of the
unknown zone-center temperatures are given in
appendix C.

EVALUATION OF EXCHANGE INTEGRALS

The labor of evaluating the gas-zone to gas
exchange integrals (eq. (4)) and the other surface-
zone to gas exchange integrals that appear in
equation (2) is considerable, since these integrals
are functions of the relative positions of the zones
in question and the integrations have to be per-
formed for each unique zone pair. Since the
gas-zone to gas exchange integrals (eq. (4)) can
be evaluated in terms of the zone-center tempera-
tures, these temperatures may be taken outside
the integral sign and the actual process of integra-
tion then becomes independent of temperature,
as in the case of the surface-zone to gas integrals
described earlier. In appendix B, it is shown that

the form of the exchange factors f(_.;) 1s such that
the volume integrals over the gas zones are trans-
formed to surface integrals over the zone cross
sections and the resulting integrations to be
performed, which are described in appendix C,
are of the form

f f Flrn (&, m)— Rl dt (5)

f f EF [, (&, ) — B, Jdn d& (5b)

where F (8—))=27er (Z) and p is the radius of the
infinitesimal gas ring in the (m,n)™ zone (see
appendix C). Though a unique value of these
integrals is assoclated with every zone pair (m,n)
and (i, 7), and there are n*=2500 different gas-
zone-pair combinations among the 50 zones, it
is not necessary to compute 2500 separate integrals.
This is true because use can be made of the sym-
metry created by the identical shape of the zones
along the length of the pipe. The integrals in
equations (5a) and (5b) are functions only of the
respective radii of the (m,n)™ and (4,7)™ zones
and their relative axial positions, or axial separa-
tions, since the size of the zones does not vary with
axial position.

Thus, there are only 55X 10=250 unique gas-
zone pairs and, consequently, the preceding inte-
grations need only be performed 250 times instead
of 2500. These integrals may then be evaluated
by placing the (1,7)™ gas zone at one end of the
pipe in each of the five different radial positions
and letting the (m,n)*™ gas zone range over all
50 zone positions in the pipe. In this way, all
250 (5X50) gas-zone to gas exchange integrals
can be determined. The problem of the surface-
zone to gas exchange integrals is handled in a
similar manner. For the cylindrical wall-surface
zones, there are a total of 500 different zone-pair
combinations with the gas zones. Again, because
the zones are of equal size along the length of the
pipe, only 50 of these combinations are unique.
The exchange integrals that correspond to these
50 unique combinations may then be evaluated by
taking the wall-surface zone at one end of the pipe
and letting the (i,7)™ zone range over all 50 gas
zones in the pipe. TFor the end-surface zone to
gas exchange integrals, there are 250 possible
zone-pair combinations all of which are unique.
Since there are five radial end-surface zones and
50 gas zones (5X50=250) no reduction in the
number of exchange integrals is possible here.

The labor of evaluating these exchange integrals
may be reduced considerably by making use of the
following consideration. Tt is shown in appendix

D of reference 1 that when the optical distance
-
between two points in the gas is such that r=Fk |s]

>>7, the error made in neglecting the radiant ex-
change between those points is less than 0.1 per-

N
cent. Because of this, the exchange factors f(s)

5
and ¢(s) may be set equal to zero for all +>7, and
the evaluation of the exchange integrals at these
distances is eliminated.

SOLUTION OF HEAT-BALANCE EQUATIONS

The evaluation of all the gas exchange integrals
that appear in equation (2) having thus been
described, the surface to gas exchange integrals
become coefficients of the known surface emissive
powers and the gas to gas exchange integrals be-
come coefficients of the unknown gas-zone-center
emissive powers in that equation. In this man-
ner, all the coeflicients of the gas-zone emissive
powers in each of the 50 zone-center heat-balance
equations of the form of equation (2) are deter-
mined. The finite sums over the gas zones in
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equation (2) are therefore composed of linear com-
binations of these unknown emissive powers.
Since the surface temperatures and heat sources
are given parameters, the only unknowns left in
this syvstem of 50 equations are the 50 values of
emissive power or temperature at the zone centers.
In the absence of either flow or conduection, equa-
tion (2) will form a set of algebraic equations linear
in the unknowns ¢7% ; and may be solved directly
by standard matrix methods for such problems.
When either flow or conduction is present in the
problem, however, the equations become nonlinear
in ¢T% ; as a result of the appearance of terms in
temperature 7', ; which arise from the derivative
terms in equation (1). Consequently, the system
of equations must then be solved by an iterative
method for nonlinear algebraic equations such as
the Newton-Raphson method.

It should be mentioned that the accuracy of the
solution of these equations deteriorates rather
rapidly when the zones themselves become op-
tically dense, for instance, when the opacity of the
zones in the direction of maximum heat transfer
(radially) becomes greater than one mean free
path (r=1). As the opacity increases, the solu-
tion of equation (2) is more susceptible to error
because of the following two considerations: First,
at high values of zone opacity, the assumption of
linear variation of emissive power in the cross
section of a zone is no longer necessarily an accu-
rate representation of the actual situation, par-
ticularly in gas zones adjacent to a surface bound-
ary. Second, as the zones become increasingly
opaque, equation (2) tends to become indeter-
minate. This situation occurs when a zone be-
conles so opaque that an infinitesimal volume at
the center of the zone effectivelv receives radiation
only from the zone in which it is located and al-
most none from any of the surrounding zones.
This has the following effect on the coefficients of
the heat-balance equation (eq. (2) ) for that par-
ticular zone. The exchange integrals from the
other zones tend to vanish as the zones become
opaque, and, consequently, so do the coeflicients
of the emissive powers of the other zones in the
given equation. The exchange integral from the
given zone to its center becomes larger, rapidly
approaching the limiting value of 4, and thus
cancelling out the emission coefficient at the zone
center. Consequently, the coefficient of the emis-
sive power of the given zone also tends to vanish.

Therefore, since all the coefficients representing
radiative exchange in equation (2) become van-
ishingly small, the effects of small errors made in
numerical computation of the exchange integrals
become magnified, and the system of equations
also tends toward indeterminacy. Because of the
previous considerations, use of the method of this
report should be limited to cases in which the
optical distance across the zone in the radial direc-
tion does not exceed one mean free path.

The application of the Newton-Raphson method
to the solution of a system of nonlinear equations
similar to the one just discussed is given in detail
in appendix E of reference 1. The results of the
solution of the system of equations (eq. (2)) are
the 50 values of emissive power or temperature
at the centers of the cross sections of the 50 gas
zones. Since the temperature distribution of
the gas in the pipe is continuous, the temperatures
at the 50 gas-zone centers approximately determine
the gas temperature distribution in the pipe.
Although the temperature distribution in the
pipe has thus been determined, the problem is
not vet completely solved, since the heat ex-
change between the surfaces and the gas still
remains to be found.

DETERMINATION OF HEAT TRANSFER TO SURFACE OF PIPE

The heat transfer to the surfaces of the pipe
can be divided into two parts: (1) the direct
radiant heat transfer between the surfaces them-
selves, and (2) the heat exchange between the
surfaces and the gas. The transfer between the
surfaces and the gas is also divided between
that due to radiation and that due to conduction
between the surface and the adjacent gas. The
direct exchange between the surfaces is deseribed
by three different classes of exchange integrals.
The first category is the exchange between two
surface zones on the interior of the cylindrical

wall:
- -
qm_)i_—_O'Ttam f f h,,,,(?'m—r,«)dAmdfl, (63)
Am J A4y
Equation (6a) represents the radiation emitted

from the m™ wall-surface zone that is absorbed
at the 4 wall-surface zone. The exchange

- -
factor Ay.(rn,—7;) represents the radiant ex-
change between a wall-surface ring of infinitesimal

5
width and area dA, in position r, on the m™
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wall-surface zone and a similar surface ring at

position ;:- in the 2*® zone of area dA,.

The second category of direct surface exchange
is between two end-surface zones on opposite
ends of the pipe. The following relation gives
the emission from the n' annular surface zone
at one end to the 7*® annular surface zone at the
opposite end:

> >
Qn—)j:UT:nf f hee(r,—r)dA,dA;  (6b)
An Aj

- -
The exchange factor h,(r,—r, represents the
radiant exchange between an annular ring of

5
infinitesimal width and area dA, at position 7,
in the »n™ end-surface zone and a similar annular

ring of area dA; at position ?, in the j™ end-
surface zone on the opposite end of the pipe.
The final form of direct surface interchange is
between an end-surface zone and a cylindrical
wall zone. The following relation gives the
emission from the m™ cylindrical surface zone on
the wall to the 7™ annular surface zone on an end:

- o
G=oTh, [ [ hulru—r)d4n a4, (60
Ay d 4y

> o
The exchange factor h,.(r,—r;) represents the
radiant exchange between a wall-surface ring of

5
infinitesimal width and area dA,, at position r,,
in the m®™ wall-surface zone and an annular
surface ring of infinitesimal width and area dA;

5
at position r; in the j® end-surface zone. The
derivation of the direct surface exchange factors
hww, Beey and by, is given in appendix B.

The evaluation of the radiation exchange be-
tween the gas and the surface is somewhat more
involved. The discussion of the exchange be-
tween the gas and a wall-surface zone is similar
to that between a gas zone and an end-surface
zone; thus, for the sake of brevity, only the
exchange between a gas zone and an end-surface
zone is discussed.

At first, it would seem that the exchange be-
tween the gas and the surface could be given
directly by the surface to gas exchange integrals
that appear in equation (2). It should be
emphasized, however, that those integrals are

not for the exchange between an entire gas zone
and a surface zone, but rather represent only the
exchange between a surface zone and an in-
finitesimal volume located at the center of the
cross section of a gas zonme. Thus, the exact
formulation for the exchange between the (i, ;)™
gas zone and the m*™ wall-surface zone is given as

qu,w=ff dA, f [ f oTHE, 1) gu(rm—re )0
Am v,
(7a)

The integral represents exactly the radiation
emitted from the entire (i, 7)™ gas zone that is
transferred to the m' surface zone.

Because of the high multiplicity of integration
in equation (7a), the evaluation, as it stands, is
prohibitively laborious. Consequently, to reduce
this task to reasonable proportions, it is necessary
to make another simplifying assumption. The
assumption made is that the exchange integral
from the gas zone to the surface zone can be
approximated by the exchange integral from the
gas zone to a point at the center of the surface
zone; thus, the integration over A4, in the previous
expression is eliminated. Therefore, the approxi-
mate expression for the emission from the (i, j)™
gas zone to the m™ wall-surface zone becomes

Qe pom=An f f [ T (&, 1) gu(Bn—ro )doe,  (7h)
Pe

where ?B,,L is the position vector of the center of
the m*™ surface zone.

This approximation is quite good when the
subject gas and surface zones are far apart; it is at
its worst, though still acceptable, when the zones
are adjacent if the dimensions of the gas zones
are small in comparison with those of the pipe,
as in the present case. The emissive-power
distribution in the gas zone that appears in
equation (7b) is again the linear approximation
given by equation (3). It is shown in appendix B

- -

that, as for the case of f(s), the form of g(s) is such
that the volume integral in equation (7b) reduces
to a surface integral over the zone cross section.
The details of the integration of equation (7b) are
similar to those given in appendix C except that
the emission is now to an infinitesimal surface ring
at the center of the wall-surface zone instead of an
infinitesimal volume at the center of the gas-zone
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cross section, with an appropriate change in ex-
-

change factors from f(s) to _%(5- Again, on the
substitution of equation (3) for T*(%, ), equation
(7b) is expressed in terms of the gas-zone-center
temperatures, and the actual integration of the
exchange factors becomes independent of tem-
perature. In the same manner as discussed
earlier for the case of the surface-zone to gas
exchange integrals, it is necessary to compute only
50 unique values of the gas-zone to wall-surface
exchange integrals arising from equation (7b).
But for the gas-zone to end-surface exchange
integrals, it is again necessary to compute values
for all 250 different combinations.

The evaluation of radiant exchange to a surface
zone from the gas zones and the other surface
zones having been discussed, it is now possible to
determine the net amount of heat transferred by
radiation at each surface zone. As before, the
procedure is similar for both cylindrical wall-
surface zones and for end-surface zones, but for
the sake of brevity only the procedure for cylindri-
cal wall-surface zones will be discussed; the
situation for the ends should then be self-evident.
The equation that gives the net amount of heat
transferred by radiation on the ™ wall-surface
zone is

10 - -
qi:Z_;IaT‘;m L L ho(rm—r)d A, dA,

2 5 - -
+33 06T, f,, fA hue(rm—:)dA, d4,

=1 =1

-.
ot

n=1

05 5
+4. 353 [[for e mguran
m= Vm‘
—R)dv, —ATs, (8)

The first term in equation (8) represents the
heat radiated to the ¢*® wall zones from all the
other cylindrical wall zones, including the * zone.
The second term represents the radiation trans-
mitted from both ends of the cylinder to the i*
wall zone. The third term gives the radiation
from all the gas zones that is received at the i®®
surface zone. Finally, the last term represents
the radiation emitted by the ™ wall-surface zone.
If ¢, as given by equation (8), is positive, energy
is being removed externally from the 7 surface
zone, whereas if ¢, is negative, energy must be
supplied externally to the zone.

In the case of the ends of the cylinder, since the
end surfaces are not really surfaces at all but are
used merely as simple models of the radiation
environment external to the ends of the cylinder,
the heat-exchange equation for the end surfaces,
which corresponds to equation (8), gives the net
radiation heat transfer between the interior of the
cylinder and the external environment.

The only other mode of heat transfer to the
surfaces is conduction between the cylindrical
wall surface and the adjacent gas zones. The
conduction heat transfer at the cylindrical wall is
given by -

go,=—AN\ 25 o=, 9)
The temperature gradient in the gas at the wall
p=p, is obtained numerically from the slope at
the wall of a parabola fitted through the tempera-
ture of the subject wall-surface zone and the zone-
center temperaturcs of the first and second gas
zones away from the wall. In this way, the heat
conducted at each wall-surface zone may be
computed, and the result combined with that of
equation (8) to obtain the net total heat transfer
to the wall-surface zones.

PRACTICAL CONSIDERATIONS

In closing this section, several important practi-
cal aspects of the analysis herein should be empha-
sized. First, although allowance was made for
continuous variation of gas temperature within
he gas zones, the problem could still be stated
solely in terms of the gas-zone-center temperatures.
As a direct result of this circumstance, it becomes
possible to perform the integration of the exchange
integrals between zones in a manner independent
of zone temperatures, or stated in another way,
these exchange integrals are a function only of the
shape of the cylinder, given by L/D, and of the
opacity of the gas as given by r,=kD. This
consideration is extremely important, since the
computation of these exchange integrals is much
more time consuming than the solution of the
remainder of the problem. Therefore, it makes
sense to compute these exchange integrals sepa-
rately for given values of L/D and kD, and to
record the results in tabular form on punched
cards or computer tape. In this manner, it is
possible to solve the problem for a given cylinder
and gas absorptivity for various boundary tem-
peratures, sources in the gas, and flow rates with-
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out the necessity of having to repeat the laborious
computation of the exchange integrals each time.

RESULTS AND DISCUSSION

Equation (2) was solved on an IBM 7090
computer by using the methods described in the
last section for the general case of a gray gas
of uniform absorptivity enclosed in a black-
walled cylindrical pipe with a length to diameter
ratio of 5. Results were obtained for a range of
optical diameter of the pipe, 7,=kD, between
0.2 and 10.0 and for a wide range of gas-flow
rates and internal heat sources in the gas. For
this particular geometry, it is difficult to present
quantitative general results that give the effect
of the interaction between conduction and radia-
tion, as was done in reference 1. 'To obtain such
results for a cylindrical geometry, it would be
necessary to determine the combined radiative
and conductive exchange in the annulus between
two concentric cylindrical surfaces, a task that
is bevond the scope of this report. Consequently
most of the results presented are for radiant heat-
ing of a gas flowing through a cylindrical pipe.
Results are presented, however, that give the
effect of thermal conduction on heat transfer
from isothermal pipe walls to a flowing absorbing
gas, and the effect of combined radiative and
conductive transfer from a heat-generating cy-
lindrical core of gas in the center of the pipe
through an absorbing gas to the pipe wall is
also briefly investigated.

RADIANT HEAT TRANSFER FROM PIPE WALLS TO FLOWING
GAS

In the subsequent discussion, the gas enters
the pipe at one of the ends at a uniform tempera-
ture T; and the temperature of the corresponding
end surface, which represents the external environ-
ment at the pipe inlet, is made uniformly equal
to this incoming gas temperature. The tempera-
ture of the cylindrical wall of the pipe T, is
uniform along the length of the pipe and is greater
than 7,. The end-surface temperature at the
outlet of the pipe is assumed uniform over that
end surface and is made equal to the mean mixed
gas exit temperature 7,. This is somewhat of
an approximation, since although the gas enters
the pipe at a uniform temperature, the gas tem-
perature at the outlet will not generally be uniform
in the radial direction. It is assumed, however,
that temperature equilibrium in the gas is attained

shortly after the gas leaves the pipe, and since
the end surface at the outlet represents the en-
vironment external to the outlet of the pipe, the
assumption is considered reasonable.

In order to obtain the results in the most general
form, it is necessary to present them in terms of
dimensionless parameters. When equation (1) is
divided by k7% and the internal heat-generation
term is neglected, the equation is reduced to
dimensionless terms as follows:

°(r;)_(5)

4<£ 4+Gc,, T.,) \D)

T ToO ia(1> R
D

a(T)
(o) @ a(r)

2(5)
Y g(Maa

=S Gy e [ (z2)

The integrals on the right, as stated in the analysis,
may be represented as functions of r, and L/D.
Therefore, the solution to the preceding dimension-
less equation is determined uniquely by the pa-
rameters Ge,/r,0T%, ND)[r,0T3, 7,, L/D, and the
boundary condition at the pipe inlet:

T@D,pD)|  _T,

T* (x/D)=0 T*

If the dual dependence of 7, in the parameter
group is eliminated, the dimensionless results for
heat transfer to a flowing gas may be presented
uniquely in terms of the parameters Ge,/cT%,
NDhYeTs, 1, and L/D. The dimensionless
parameter Gc,/sT% is known as the Boltzmann
number N g, and is used in both references 1 and 2
in the discussion of radiant heat transfer to flowing
gases. The dimensionless parameter (A/D)/cT3
1s the radiation-conduction parameter Ngg and is
used to represent the effects of thermal conduction
on heat transfer in a radiation-absorbing gas.
Results for radiant transfer to a flowing gas in
the pipe, with conduction transfer neglected
(N¢r=0), are given in figure 4, for the case of slug
flow of the gas, the flow rate G being uniform over
the pipe cross section. As will be seen later, it
may be a reasonable assumption to neglect conduec-
tion transfer when the temperature level in the




RADIANT HEAT TRANSFER TO ABSORBING GASES ENCLOSED IN A CIRCULAR PIPE 11

‘.O T T T
—_ Boltzmann number,
[N — T ”BO |
blt / T
~ g / 16.6
Lol
! ; :
KD H
< . / /) 333
Py / ——
Ll
@
=
3
2z
: 0/
S .4 66.6
L P—
® /7 \I\
g Y }
o
< 133.2
S 2
b e |
= / 1
o M N
T i i

? | i
0] 2 4 [S) 8 10

Gas opacity, 1,

Fictre 1.—Heat transfer to aheorbing gas flowing through
pipe from isothermal pipe walls for slug flow without
conduction. Ratio of gas inlet to wall temperature, 0.4;
length to diameter ratio, 5; conduction-radiation pa-
rameter, 0.

gas becomes very high. The parameter A=
(T,—Ty)/(Ty—T,) represents the effectiveness of
the radiant heat transfer to the gas. Tt is the
ratio of the actual heat transfer to the gas to the
maximum heat transfer theoretically possible.
The value of T, in the expression for A is the
mixed-mean gas temperature at the outlet of
the pipe.

The results given in figure 4 are very similar
to those obtained in reference 1 for radiant heat
transfer to a gas flowing between two parallel
flat plates. As the absorptivity of the gas, and
thus 7,, increases {rom zero, the amount of energy
radiated from the wall of the pipe that is absorbed
by the gas increases from zero to some maximum
value. Thereafter, for further increases in gas
absorptivity, the amount of heat transferred to
the gas steadily decreases. The reason for this
eventual decrease in heat transfer with increasing
gas absorptivity is caused by the self-shielding of
the gas as it becomes more absorptive. At high
values of gas absorptivity, most of the direct
radiation from the wall of the pipe is absorbed in
the gas adjacent to the wall, and since it is re-
emitted isotropically in the gas, about one-half
is remitted toward the wall and reabrorbed there.
Therefore, very little direct wall radiation reaches

the gas in the center of the pipe and consejuently
the gas there remains relatively cool. As the
gas absorptivity increases, the laver of gas adjacent
to the wall required to attenuate the direct wall
radiation becomes thinner; consequently, a greater
proportion of the gas in the pipe is shielded from
the direct wall radiation, which results in lower
overall heat transfer.

The effects of conduction and velocity profile on
the heat transfer to a flowing gas are shown in
figures 5(a) and (b) for Nzp=33. The results in
figure 5(a) are for a slug velocity profile, as in the
case of those presented earlier in figure 4, whereas
the results for a parabolic velocity distribution
are shown in figure 5(b). For the case of the
parabolic velocity distribution, the Boltzmann
number is based on the average flow rate in the
pipe. Obviously, the effect of added conduction
is always to increase the overall heat transfer to
the gas. It is interesting to note, however, what
the relative effects of conduction on the overall
heat transfer are. In figures 3(a) and (b), the
values of A at r,=—0 represent the thermal ef-
fectiveness of heat exchange due to conduction
alone and, thus, represent a ‘‘floor” under the
curves as 7, increases and radiant transfer becomes
effective. It is seen that for values of Ngp=
(\/D)}eT3<0.05, radiation seems to be the domi-
nant mode of transfer except, of course, at very
low values of 7, where conduction is always
dominant; however, for values of N¢z>0.5, the
transfer appears to be primarily by conduction for
all values of r,. Thus, if the value of Ngz in a
particular situation is known, the mode of heat
transfer that will be dominant in the combined
process can be quickly ascertained. Although the
thermal conductivity of most gases increases
slightly with temperature, N¢g 1s also inversely
proportional to the cube of the temperature.
Therefore, the effect of conduction transfer in a
radiation-absorbing gas decreases rapidly as the
temperature level becomes high, since the value of
Ncr drops very quickly despite the increase in
thermal conduectivity. The results shown for a
parabolic velocity profile in figure 5(b) are very
similar to those shown in figure 5(a), except that
for any given value of N¢g, the values of A are less
than the corresponding values for a slug velocity
profile. This decrease in A is to be expected,
since a parabolic-velocity profile presents a much
smaller heat sink adjacent to the wall than a
slug-velocity profile does.
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Ficure 5.—Heat transfer to absorbing gas flowing through pipe from isothermal pipe walls with combined radiation

and conduction. Ratio of gas inlet to wall temperature,

RADIANT HEAT TRANSFER FROM UNIFORMLY HEATED CY-
LINDRICAL GASEOUS CORE TO SURROUNDING FLOWING
GAS AND PIPE WALL

The situation discussed here is typical of radiant
heat transfer from an electric arc, plasma jet, or
gaseous-reactor core enclosed in a pipe to the walls
of the pipe and to the gas flowing in the annulus
between the core and the pipe. For the results
presented, the radius of the heat-generating gase-
ous core is equal to 0.2 of the pipe radius, the heat-
generation rate per unit volume is uniform both
axially and radially in the core, and the absorp-
tion coeflicients of the core and the surrounding
gas are equal. The boundary conditions are
similar to those used in the preceding section.
The gas enters the pipe at a uniform temperature
T; and this temperature is again taken to be
uniform over the end surface of the inlet of the
pipe. The wall temperature of the pipe is uniform
along the length of the pipe and is also taken to be
equal to T, the gas-inlet temperature. The end-
surface temperature at the outlet of the pipe is
assumed to be uniform over that surface and is
again made equal to the mean mixed gas temper-

0.4; length to diameter ratio, 5.0; Boltzmann number, 33.

ature at that end. The effects of thermal con-
ductivity are again neglected, and the results
presented are for the case of slug flow of the gas.
Although the temperature of the heat-generating
core in the center of the pipe is much hotter than
that of the surrounding gas, the assumption of
uniform temperature on the ends of the pipe is
not unreasonable, because the cross-sectional area
of the core is such a small fraction of the total end
area, The ratio of the mixed mean gas-outlet
temperature to gas-inlet temperature is used as a
parameter in presenting the results. In order to
keep this temperature ratio fixed for a number of
different cases, it is necessary to vary the amount
of heat generation in the core accordingly.

Since, in the case of an electric arc or gaseous
reactor enclosed in a pipe, the temperature of the
plasma is usually much hotter than the melting
point of the material from which the pipe is
fabricated, it is necessary to cool the enclosing pipe
externally when a large fraction of the heat
generated in the plasma is deposited directly on
the pipe walls. The radiant heat transfer from the
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plasma to the pipe walls may be attenunated,
however, by increasing the flow rate and opacity of
the gas in the annulus between the plasma core
and the pipe wall. Consequently, the results for
this configuration will be presented in the form of
fractional heat load to the wall as a function of
temperature-rise ratio of the gas flowing through
the pipe, Boltzmann number (indicative of gas
flow rate), and gas opacity. Figure 6 gives the
fraction of heat generated that is absorbed by the
pipe wall as a function of Boltzmann number, with
gas opacity 7, as a parameter for a fixed value of
gas-temperature ratio in the pipe. As expected,
an increase in the gas flow rate decreases the
amount of heat transmitted to the wall of the pipe
for all values of gas absorptivity. Also, the
effectiveness of increasing the absorptivity in
reducing the heat load on the wall increases as the
Boltzmann number increases. Thus, at low
values of Beltzmann number (low values of gas
flow), the percent of heat absorbed by the wall is
affected only slightly by changes in gas absorptiv-
ity; however, at higher Boltzmann numbers, the
percent of absorption at the wall decreases rapidly
as the gas opacity inecreases. The percent of
absorption at the wall decreases continuously with
increasing gas flow but seems to approach a limit-
ing value that is a function only of the opacity of
the gas in the pipe. This limiting value of percent
absorption at the wall decreases with increasing
gas opacity and is less than 4 percent for values of
gas opacity 7, greater than 10. Figure 7 is
essentially a cross plot of figure 6 that shows more
clearly the effect of gas opacity on the heat load to
the wall. As mentioned earlier, at low values of
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Figure 6.—Heat load to pipe wall as function of Boltz-
mann humber based on wall temperature for various
values of gas opacity. Wall temperature equal to gas
inlet temperature; length to diameter ratio, 5; tempera-
ture rise ratio, 2.
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Ficure 7.—Fractional heat load to wall from heat-
generating gaseous core as function of gas opacity for
several values of Boltzmann number based on gas inlet
temperature. Wall temperature equal to gas inlet tem-
perature; tcmperature rise ratio, 2; length to diameter
ratio, 5.

Boltzmann number, the opacity of the gas has
practically no effect on the percent heat load to the
wall. As the flow rate in the pipe is increased
however, an increase in the gas absorptivity
causes the heat load to the wall to decrease rapidly.
Also for very large Boltzmann numbers, a limit is
reached where the heat load to the wall becomes a
function only of gas opacity and is nearly inde-
pendent of further increases in flow rate.

Figure 8 shows the effect of varying the tem-
perature-rise ratio of the gas flowing in the pipe.
As expected, when the temperature-rise ratio of
the gas in the pipe increases, a large fraction of the
heat generated is lost to the wall. From the fore-
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Ficure 8.—TFractional heat load to wall at constant
Boltzmann number of 533, based on gas inlet tempera-
ture, as function of gas opacity for two values of tem-
perature rise ratio. Length to diameter ratio, 5.
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going discussion it appears that in order to shield a
pipe wall from the radiation of a hot arc or plasma
enclosed in the pipe, it is necessary not only to
make the intervening gas stream relatively opaque
but also to make the gas flow rate sufficiently large
to maintain a high value of Boltzmann number.
The specific results obtained here were for a pipe
with a length to diameter ratio of 5, which had a
heat-generating gaseous core at the center whose
radius was 0.2 that of the pipe. Though the
quantitative results for this case probably do not
apply to other pipe configurations, it is expected
that the qualitative trends will be the same.
RADIANT HEAT TRANSFER FROM A UNIFORMLY HEATED CY-
LINDRICAL GASEQUS CORE THROUGH AN ABSORBING
STAGNANT GAS TO THE PIPE WALL

The situation here is much the same as for the
previous case except that the absorbing gas be-
tween the gaseous heat-generating core and the
walls is stationary. The cylindrical wall of the
pipe and the two end surfaces are kept at the same
uniform temperature. Consequently, since there
is no flow and the conditions at both ends of the
pipe are the same, if the end effects are small, the
conditions at the middle of the cylinder are es-
sentially the same as those in a similar pipe of
infinite length, It was found that for L/I1)=5 the
end effects were relatively small, and the principal
variation of temperature in the pipe was in the
radial direction. The axial wvariations of tem-
perature in the pipe were small and due only to
the presence of the finite ends of the pipe.

For the case of no conduction or flow in the
pipe, equation (1) becomes linear in the emissive
power E=¢T* and the results are best presented
by illustrating the dimensionless emissive-power
profiles in the gas. Because of the linear nature
of the problem, the emissive-power difference be-
tween points in the gas and the wall is directly
proportional to the radial heat flux transmitted
from the gaseous core to the pipe walls. Thus,
the results may be made dimensionless by dividing
this difference of emissive powers by the radial
heat flux measured at a radius ratio of 0.2 at the
edge of the gaseous core. The radial heat flux
at this point is obtained by dividing the total heat
generation in the core ¢’’’wD*L/4 by the core sur-
face area #DL. Thus, the radial flux at this radius
18 ¢'’=¢q’"’D/4. The results could have been made
dimensionless just as well by dividing AE by the
heat flux at any other radius in the pipe outside

the gaseous core, for instance, by the flux at the
wall. Because there are no sources outside the
gaseous core, the radial heat flux varies inversely
with the radius, and the heat fluxes at any two
radial stations differ only by a constant factor
equal to the ratio of the two radii. Thus, the
present choice is purely arbitrary.

The results are shown in figure 9 for various
values of gas opacity. The discontinuity in the
emissive-power profiles at p/p,=—0.2 is due to the
radial step change in internal heat generation at
that point in going {rom the gaseous heat-generat-
ing core to the surrounding gas. Since conduction
is not present, there is no reason for the emissive-
power profile to be continuous at that point or at
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the wall where p/p,=1. The discontinuity of
emissive-power profiles at gas-surface or source
boundaries is a well-known phenomenon associated
with pure radiation transfer in absorbing gases.
As seen from figure 9, with increasing gas opacity,
the emissive-power curves in the region outside
the core become higher and steeper, as expected,
since an increase in the opacity increases the resist-
ance to heat transfer. At the same time, however,
the emissive power of the heat-generating gas in
the core at first decreases with increasing absorp-
tivity to some minimum value and then increases
again slightly with further increases in opacity.
The reason for this behavior in the core is that the
emission from a gaseous volume source is roughly
proportional to the product of its absorption
coefficient with the emissive power of the source
relative to its surroundings. This relation does
not hold exactly for finite volumes of gases because
of self-shielding in the volume, but it is still
qualitatively correct. Consequently, for the same
amount of energy emitted, as the absorptivity in
the core increases, as indicated by increased
opacity of the gas in the pipe, the relative emissive
power, as indicated by the jump in emissive power
at the core boundary, decreases. The rise in
dimensionless emissive power in the core in going
from a gas opacity of 7,=6 to 7,=10 is believed to
be a result of the fact that in that range of +,
although the jump in emissive power at the core
boundary decreases as described previosuly when
the opacity =, increases from 6 to 10, the increase
in emissive power in the gas outside the core is
even more rapid, which results in a net increase
of the emissive-power level in the core.

Also plotted in figure 9 for 7,=10, is the ap-
proximate emissive-power profile of an absorbing
gas in an annulus between two concentric cylin-
drical surfaces. These results were obtained from
an analysis derived in reference 7 based on the
Rosseland diffusion approximation with a jump
boundary condition. Although the analysis of
reference 7 postulates an inner cylindrical surface
rather than a gaseous core as the radiation source,
the results apply equally well to the present case
between the core and the wall, since the gaseous
core may be replaced by a diffusely emitting
cylindrical surface that has the same shape and
size as the core, and whose emissive power is such
that the net radiant flux given off by this surface
is equal to that emitted from the gaseous core.

The agreement of the results based on the analysis
in reference 7 with those obtained in this report
is fairly good, especially considering the fact that
the Rosseland approximation with a jump bound-
ary condition is valid only for high values of
gas opacity. The gas opacity of 7,=10 for which
the results are compared is about the lower limit
for the validity of that analysis.

The effect of conduction on the radial tempera-
ture profile in the gas for the previous configura-
tion is shown in figure 10. Because equation (1)
becomes nonlinear in the presence of conduction,
it is no longer possible to present the dimension-
less results that show the effect of conduction in
the same parametric form that was used to por-
tray the pure radiation results in figure 9. The
conduction-radiation parameter Nc¢p= (\/D)/¢T3%,
which was derived earlier, is again used to present.
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Ficvre 10.—Dimensionless temperature profiles for emi s-
sion from gaseous heat-generating cylindrical core
through annulus of stationary absorbing, conduecting
gas to black eylindrical pipe wall showing effect of con-
duction in gas. Gas opacity, 4.0; dimensionless radial
heat flux, 5.0.
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the results in the presence of conduction. The
surface temperature of the cylindrical wall is
taken as the reference temperature 7. The
radial heat flux ¢’” at p/p,=0.2 is made dimension-
less by dividing by ¢T%. Consequently, for this
case, the results for combined conduction and
radiation depend uniquely on the dimensionless
parameters Ncg, ¢''/cT%, and 7,. The effect of
L/D is omitted here, because, as before, only
one-dimensional radial temperature profiles at
the middle of the pipe are considered, and for L/D
sufficiently large, its effect is merely a perturba-
tion on the results. Thus, the results in figure 10
give the dimensionless temperature profiles of the
gas in the pipe for several values of N¢r and for
fixed values of 7, and ¢’’/¢T%. 'The results are not
unusual. With conduction, the temperature pro-
files become continuous at the core boundary and
at the wall, and the overall temperature level in
the pipe, especially in the core, is reduced since
the added conduction increases the overall heat
transfer.
CONCLUDING REMARKS

The method of this report for solving the
problem of radiant heat transfer to an absorbing
gas in a circular pipe under the influence of flow
and conduction closely parallels that given in
reference 1 for solving essentially the same
problem in a channel formed by a pair of semi-
infinite flat plates. Results were presented for
a gray gas of uniform absorptivity enclosed in a
black circular pipe with a length to diameter
ratio of 5.

For the case of radiant heat transfer from
isothermal walls of the pipe to a cooler, flowing,
absorbing gas, the heat transfer to the gas goes
through a maximum as the opacity of the gas is
increased. The maximum heat transfer occurred
in the range of gas opacity from 3 to 4. This
effect is due to the self-shielding of the gas to the
radiation being emitted from the pipe walls and
was also observed in reference 1 in heating an
absorbing gas flowing between two isothermal
flat plates.

The effect of thermal conduction on heat
transfer to a flowing radiation-absorbing gas
becomes important whenever the conduction-
radiation parameter N, exceeds 0.05 or whenever
the gas opacity is less than 1.  As the temperature

level of the gas rises, although the thermal con-
ductivity of the gas will generally increase some-
what, conduction rapidly becomes relatively less
important than radiation. This decrease in
importance is due to the inverse variation of Ngg,
which results in the rapid decrease in the value
of this parameter as the temperature rises despite
the attendant increase in thermal conductivity of
the gas.

When a heat-generating gaseous core is con-
tained in the pipe, as in the case of a plasma jet
or in the coaxial-jet gaseous nuclear-rocket con-
cept, a practical problem of current interest is to
prevent melting or burnout of the pipe wall by
shielding it from the radiation emitted by the
high-temperature plasma core. It was shown
herein that, if the opacity of the gas in the pipe is
greater than 10, the heat load to the wall of the
pipe can be made negligibly small if, in addition,
the gas flow rate is such that the Boltzmann
number in the pipe, based on the wall temperature,
becomes 1000 or greater. On the basis of these
results, it is felt that a device in which a high-
temperature plasma must be contained, such as a
gaseous nuclear rocket, is feasible from a heat-
transfer standpoint if a gas opacity of approxi-
mately 10 is attainable over the temperature
range of interest.

Results are also presented for one-dimensional
radial radiant heat transfer from a heat-generating
cylindrical gaseous core to the pipe walls. The
emissive-power profile in the gas between the
core and the wall was compared with results from
reference 7 for an absorbing gas in an annulus
between two concentric black cylindrical surfaces,
and agreement was found to be good. For the
case where no conduction was present, a large
jump in emissive power occurred at the core
boundary. The magnitude of the jump was
roughly inversely proportional to the opacity of
the gas. In the presence of conduction, the
jump disappears, and the radial-temperature profile
becomes continuous. As the conductivity of the
gas is increased from zero, the temperature levels
in the gas, especially in the core, rapidly decrease
as expected.

Lewis REsEarcH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CLEVELAND, OH10, September 25, 1962
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Appendix A

SYMBOLS
surface area 7 coordinate in radial direction in cross
specific heat of gas section of gas zone
diameter of pipe 7, radial width of cross section of gas zone
infinitesimal volume located at center of 8 angular coordinate
gas-zone cross section A heat-exchange effectiveness, (7,—T1)/
arbitrary infinitesimal gas volume (T,—T)
emissive power, ¢T* A thermal conductivity of gas
gas-ring-source to gas radiation exchange £ COOI‘dl?late in axial direction in cross
factor per unit cross-sectional area of section of gas zone ]
. - - £, length of gas zone cross section
ring F(s) =2mpf(s) P radius of point in interior of pipe
gas-ring-source to gas radiation exchange  p, radius of pipe
factor per unit volume of ring o Stefan-Boltzmann constant
flow density of gas, weight flow per unit = optical distance between two points in
area pipe, =k
surface-ring-source to gas radiation ex- ¢ optical diameter of pipe or opacity of
change factor gas, 7,=kD
surface-ring-source to surface radiation  Subscripts:
exchange factor
integral function (see eq. (B10)) C conduction
radiation absorption coeflicient of gas, ¢ end surface of pipe
reciprocal length 1 position along length of pipe of fixed
Boltzmann number, Gc,/o T3 gas or yall-surface zone (uspally that
conduction-radiation parameter, (\/D)/ on which heat balance is taken),
o T2 =1, 10
heat transferred to surfaces wn conditions at inlet of pipe
radial heat flux per unit area j radial position of fixed gas or end-surface
heat generation per unit volume of dis- zoné in pipe measured from center of
tributed sources in gas pipe (?utward (usuall).f for that zone
. o on which heat balance is taken), j=1,5
pOSlthn vector f)f zone center 1n 1nterior l end number, [=1, 2
of pipe or on its surface m general position along length of pipe of
position vector of arbitrary point in in- gas or wall-surface zone, m=1, 10
terior of pipe or on its surface n general radial position from center of
position vector of gas volume dV in in- pipe to wall of gas or end-surface
terior of pipe _ zome, n=1, 5 .
] 0 integrated mean conditions at outlet of
relative position vector between two pipe
points in pipe R radiation
temperature s surface
axial coordinate w inner surface of pipe wall
arbitrary function (see eq. (B8g)) * reference temperature

17




APPENDIX B

DERIVATION OF EXCHANGE FACTORS FOR CYLINDRICAL GEOMETRY

GAS TO GAS EXCHANGE FACTORS

Since the conditions in the cylinder are axisym-
metric, the conditions in a ring of gas at a given
radius from the center of the cylinder will be uni-
form. Thus, it is sufficient to consider the
exchange between such a ring of gas of infinitesimal
cross section and an infinitesimal volume at some
other point in the cylinder. This situation is
shown in sketch (a). The radius of the ring of

//-R dR d8 dx

———

Sketch (a).

gas is R and the infinitesimal volume at P, to
which this ring radiates, is at axial distance z
from the plane of the ring and at some radius r
from the centerline. 'The distance from P to some
point on the ring is given by z. Let the emissive
power of the ring be unity and let dV be the in-
finitesimal volume at P. Consider the radiation
from an infinitesimal are of the ring that is trans-
mitted to and absorbed at P. Since the volume
of this infinitesimal arc is B dR dé dz, the radiation
from this arc that is absorbed at P is

4kRdAR df dx
47z

Let P’ be the projection of P on the plane of the
ring and let 8 be the angle between the radius
vector through P’ and the radius vector to the
radiating arc on the ring. The distance z can
then be found from the relation

2Z2=24(r—R cos 6)*+R?sin® ¢ (B2)

If equation (B1) is integrated from §=0 to 2x, the
contribution of the entire ring to the absorption
18

dgp= e~k dV (B1)

at P is obtained. Note from equation (B2) that
the integrand given by equation (Bl) is sym-
metrical about §=r; thus

r ,—kz
aqP:2k2dV£dexf ¢ -do (B3)
. 0 2
where the relation between z and 6 is given by
equation (B2). As the situation stands, 2, and
thus the integral in equation (B3), is a function
of the three parameters x, », and E. Since the
integral in equation (B3) must be evaluated
numerically and then tabulated for use in the zone
exchange-integral computations, it is important
to reduce its functional dependence to as few dis-
tinct variables as possible. The expansion of

equation (B2) results in

=224+ R*+r*—2Rr cos § (B4)
Define
22=2%0) =2+ R*4+r"—2Rr
BR=2(m) =2+ R*+-r*+2Rr (B5)
thus,
. , zitzi
R 9 (B6)
and
2R )’::2”_2—&’ (B7)

Substitution of these relations into equation (B4)
results in

(B8a)

Thus, as given by equation (B8a), z is now a
function of only two parameters, z, and z. If,
in addition, the substitution r==kz is made, equa-
tion (B3) may be now also expressed in terms of
the two parameters 7, and 7,. The expression for
d# in equation (B3) is found in terms of dr as
follows: Write equation (BSa) in terms of r and
differentiate to obtain

r2—72

2r dr=— 5

sin 6d6

(B8b)




RADIANT HEAT TRANSFER TO ABSORBING

Solve equation (B8a) for cos 8 to obtain

27— (2 +12)

cos = A (BS8c)
To Tx
Then substitute
sin #=+/(1—cos 6)(1+cos 6) (B8d)
into equation (B8c) to obtain
sin 0— Z—7%) (B8e)

Substitute this result in equation (B8b) to obtain
27 dr

d0~—=“(T”—_T5(T_i_.;§ (Bsf)
Define
R
ORI
then
do=p (Tl (BSh)

-
and
. T2/%0 p—T
sqp—2k AV E AR da f g (L) a(z) ®9
™ 1 To 7o
By examining equation (B4) and converting to a
function of =, it becomes obvious that r, and 7,

are precisely the minimum and maximum optical
distances, respectively, from the ring to point

> o
P. If f(s—P) is defined as the exchange factor

5
between the gas ring through s of infinitesimal
volume 2x? dR dx and the infinitesimal volume

-
dV at P, then the radiant exchange between those
two volumes is given by

sg=2xR AR dz)(k V) {(s—P)
Then, in terms of equation (B9), f(g—;’) becomes

f—P)=f ( )

5()a(2) oo

. . . T
The parameterization here is changed to <7‘o, -z
TD

o (T7x/T0 e (7—1'0

because this is the most convenient form for
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tabular representation of the integral in equation

(B10). 'The function
(2)a(2) o

()

is plotted in figure 11.
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Ficure 11.—Variation of integral in cquation (B11) with
opacity ratio.
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CYLINDRICAL-SURFACE TO GAS EXCHANGE FACTORS

The problem now is to determine the radiative
exchange between a ring (of infinitesimal width
dx) on the interior cylindrical surface of the pipe
and an infinitesimal volume dV at some point P
in the gas. This situation is demonstrated in
sketch (b).
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Sketch (b).

The radius of the surface ring on the pipe wall is
R, and the point P is at an axial distance z from
the plane of the ring and at radius » from the
centerline. The radiation emitted at unit emis-
sive power from an infinitesimal arc of the ring
that is transmitted to and absorbed at P is given
by

,d6d ke
dqp:-IET(x cos ¢ % kdV

(B12)
where ¢ is the angle between the ray from the
surface element ', d9 d« to P and the normal to
that surface element. The relation between =
and 6 is the same as before and is given by equa-
tion (B4). The law of cosines is used to find cos
¢ from the triangle R2,zs formed by the infinitesimal
surface element, the center of the surface ring,
and point P. From the law of cosines

R2+22—2R,z cos o=s® (B13)

and from sketch (b), s?=r’4-z% also z* may be

found in terms of r, R,, and z [rom equation (B4).
Combine these relations and solve for cos ¢ to

obtain

R,—rcos 6

COS o= Z

(B14)
Now, substitute equation (B14) in (B12) to
eliminate cos ¢; then equation (B12) may be
integrated from 0 to 2 to obtain the contribution
from the entire surface ring to the absorption at
point . When the result is reduced to terms of

7, and 7., as before, the following equation is
obtained:

0p=2k* aV 2 0 f e

(o) S(2)a(z) o

where cos 6 is a function of 7./, and /7, and is

given by equation (BSc). This situation is a
little more complicated, since the resulting integral
is now a function of three parameters, r,, r,, and
the radius ratio r/R,. Thus, the exchange factor

)

gu(s—P) between the ring surface 2xR, dz and
the volume dV is best given as the sum of two
integrals, each of which is a function of only the
two parameters , and r,. Again, the parameter-

ization is changed to (r,,, ﬁ) for the same
To
Thus, the result is

A
gw(S—P):(Iw (Ta; - R )

—-‘ro ity g —(r—7,)
" (%)
f‘r,,/ro e—(r—1,)
"R, (T,,)

(cos 0)8 (TL) d (f)] (B16)
The integrals

D)
I (m )= fr/%?;)”("o”m() (2)

(B18)

are plotted in figures 12 and 13, respectively.

END-SURFACE TO GAS EXCHANGE FACTORS

Here, it is desired to derive the relation for
the radiative exchange between an annular ring
surface element of radius 2 and width dR on
one of the ends and an infinitesimal volume at
some point P in the gas. Sketech (c) demon-

reasons given earlier,

#(2)1()

Sketch (e).
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strates this situation, and the nomenclature is
the same as that used for the previous sketches.
The radiation emitted at unit emissive power
from an infinitesimal arc of the annular ring
that is transmitted to and absorbed at P is given
by

—kz
qu:R_dg_@E cos ¢ e_zz_ kdV

(B19)
where ¢ is the angle between the normal to the
surface element and the ray from the element to
point P. In this case, cos ¢ is very simply
given by

oS Yy=-

Substitute this relation for cos ¢ in equation (B19)
and integrate from 0 to 2= to obtain the contribu-
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F1cure 12—Variation of integral in equation (B17)
with opacity ratio.
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tion from the entire annular ring to the absorption
at P in terms of 7, and 7,:

Txl7, eT—;B(TLO) d (TLO) (B20)

7

sqp2kt AV R_dR

»

2
= .:
~ . i
N N ‘
L B T
. 08— o
2 .oe. |
"
~ .04
®
o ;
2 02—
c !
s *
g
b4 0! \ \
e 000 AR BN
. TRNCAN R
S 004 L AALVVWN
2 : AW
- i P ; :
MV e
002 AR opacity, ;
, \ o
| : il
001 —- - : AR 001; ;
.0008 : H— G-or -
.0006 &— - 4 A_MAE-»—W—%—AEV T k«! - 3,,.& x—
.0004—— : \\\\ 03
- ? 5 \ N
0002 411 '
i ; .2
.OOO‘ L . . ,AL .5 J
| 2 48 810 20 40 6080100

Opacity ratio, v /7,
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opacity ratio.

- 7/To (r—70)
I (T'" £—>=J‘(rlra) le< ) (cos O)B( ) ( )

cos o= (Z) ~[1+(2) T 1-(2)
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Thus, the exchange factor between the annular
ring surface on the end of area 2xR dI? and the
volume dV at point P is given by

> > Ta
ge(s""P):ge <To) —>
k3 e~ To 77/796 (r—14)
The integral

t2lTe ,— (17
Tf k3 o e 0
)
To 1 ( >

was described earlier.
SURFACE TO SURFACE EXCHANGE FACTORS

(a(2) o

(a(2) o

There are three distinct surface to surface exchange
factors: hy,, the cylindrical-ring-surface to cylin-
drical-ring-surface exchange factor; hy,=Hh.., the
cylindrical-ring-surface to end-annular-ring-sur-
face exchange factor, and k.., the end-annular-ring-
surface to end-annular-ring-surface exchange
factor. Most of the basic relations that are
needed in the derivations of these surface to
surface exchange factors have already been dis-
cussed and will not be repeated. The graphics
of the present situations are similar to those given
in sketches (b) and (c).

Thus, for the case of k.., consider an infinitesi-
mal area d4 at a point @ on the cylindrical surface
of the pipe wall that receives radiation from a
ring surface of infinitesimal width dz on the pipe
wall, and let z be the axial distance {rom @ to
the plane of this ring. The point € lies, of course,
on the same radius as the ring. Thus, the radia-
tion exchange at unit emissive power from an
infinitesimal arc of the ring to dA4 at @ is given by

—kz
dqul_io_%__ﬁdm dA cos? ¢ e‘ZT (B22)

Using the relation for cos ¢ from equation (B14),
noting that here r=R,, and integrating over the
whole ring yield the following result in terms of
7, and 7,

[EN
5g0—2 I l:rdx dAf

(1—cols 08 <Tl> d ({-) (B23)

Equation (B23) can then be integrated over the
ring of which dA is a surface element to obtain

the total exchange between the two surface rings.
Thus, the exchange factor between two surface
rings on the cylindrical wall, each of infinitesimal
area 2wk, do and separated by a distance x is

> o r
hww(s_Q):hww Tayf)

204 ,—7, Tx/ro
K fc fl (1—cos 6)*

()

—-(1 14)

G

The {unction

D e ()5

(B25)

It 1s interesting to note

that in this case r,=kz and r/r,=~1+4R%/i2
Equation (BS8c) is used to express cos 6 in equation
(B25) as a function of 7/7, and 7./r,.

The exchange factor h,, is derived in an almost
identical manner. Let the emitting surface ring
be on the cylindrical wall as before, and let dA
be at point @ on an end surface at radius r
Then the transmission at unit emissive power
from an infinitesimal arc of the wall surface to
Q is given by

is plotted in figure 15.

R,d6dzx
™

dge= (B26)

Using the relations for cos ¢ and cos ¢ derived
earlier and integrating over the ring as before
vield

2 Lt
6qq~2Rk ddi

f”/ro(1—40080> ] 5( ) ( ) (B27)

Again, this expression may be integrated over d4
to obtain the exchange between a ring on the cyl-
indrical wall of area 2xR, dz and an annular ring
on the end surface of area 27r dr. Because of the
dependence of the result on radius ratio r/I2,, it
again makes sense to split the expression for ex-
change factor into two integrals, each of which is

dependent on only (ro; ?) Thus, the exchange
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1 (e )= J0 0 () # (7))
P (2= N LG -]

factor between the two infinitesimal areas given
previously becomes

- - r
hwe(s—Q):hme<To;T_T)
. J‘v,/ro P
! CH
To

—(r=1p)
— 55 f ( cos0do| (B28)

2

The functions

ey
Ty e Qa6

(B30)

(2)a(2) o

and

are plotted in figures 14 and 16, respectively.

Finally, in deriving h., the exchange factor
between annular rings at opposite ends of the
pipe, the same procedure is again used. The ra-
diation transferred per unit emissive power from
an infinitesimal arc of an annular ring on one end
of area 2«7 dr to an area dA at point @ at radius
#’ on the other end is

dgo— r dr dé

e—kz
dA cos? ¢ (B31)

Integration over the annular ring yields

sgr=""" drdd f we g (1) d (i) (B32)
T Ty To

where z is the axial distance between the two
surfaces, and is, in this case, merely the length
of the cylinder. Then in the same manner as
for the previous cases, the exchange factor between
the two annular surface rings on each end of area
27r dr and 2xr" dr’, respectively, becomes

= : 4 —T4
hoo(s —Q) =, <TO, ?):’i 2 6T4

—_ [ G @eC) o
ONOICRC

. . T
has been previously discussed as J, (r,,, —'>~
TO
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APPENDIX C

COMPUTATION OF GAS-ZONE TO GAS EXCHANGE INTEGRALS

Consider the problem of computing the radia-
tion transfer from one of the toroidal gas zones to
an infinitesimal volume located at the center of
the cross section of one of the other zones. A
cross section of the cylindrical channel in which
this situation is illustrated is shown in figure 17.
The gas zones are toroidal rings of rectangular
cross section, as shown, whose axis is the centerline
of the cylinder. The interior of the cross section
of the (m, n)*™ zone is described by the rectangular
coordinate system (£, 7) whose origin is at the
center of the cross section, as shown in figure 17
The position vector of any point in the cross section

N
of the (m,n)™ gas zone is designated by r. .(£, 7).
The position vector of the infinitesimal volume at
the center of the cross section of the (7,7)™ zone
that is being irradiated by the (m,n)®™ zone is
-

R,

5
the point R, ; consists of a uniformly absorbing

The region enclosing the (m,n)™ zone and

Cross section of
{m,n)th gos zone

Tm n-\} ED_—i
- i, -
m=-\.n . 7;// / 170
Cross section of 4/&1/ 71i

(7,/)th gos zone

;;v.n (5-77)'/

Rij - »
M =kis§s | 4 /
d{//" o= #lE d4=d& dn” Tm,n-1
L1

Gas ring of cross
section d4—~.__

F1cure 17.—Gas zone cross sections illustrating method

of integrating exchange integral from (m, n)t® gas-ring
zone to dV at —I—i).; 4

gray medium. The (m,n)™ zone may be thought
of as being built up by a series of rings, each of
which has an infinitesimal cross-sectional area
d¢ dn. The emissive-power distribution in the
zone is a linear function of (£, 9) given by equation
(3). The exchange factor between one of the
gas-ring sources at position ;'),,,, «(§, 1) in the (m, n)™
-

zone, and the infinitesimal volume dV at R, is
given by

where p is the radius of the gas-ring source through
5
Tm, (£ 1),

5> o -
S§=Tm, n(E; 77) +Ri, j
and

—kjs|

Since the nature of the exchange factors f(z) de-
rived in appendix B is such that the volume inte-
grals over the gas zones beccme surface integrals
over the zone cross sections, the radiation from the
entire (m,n)™ zone that is absorbed by dV at

Ibl;,, ;1s given by
- -
bg=kdV,, ﬁT*(z, MV F [P n&, m)— By, )2 dn
C1)

Substitution of equation (3) for T*(£, %) in equation
(C1) gives

=Tt [ 16t an
el | ONT Y

+z(_Tm_ﬂn—_m) f f WF(S)dt dn (C2)

where ¢T% , is the emissive power at the center

of the cross section of the (m,n)™ zone and 7,1, »

and T, .1 are the temperatures at the center
25
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of the cross section of zones adjacent to the (m, n)®
zones in the axial and radial directions, respec-

5
tively, toward dV at position B, ; As a result of
these substitutions, the emissive powers do not
enter into the integrations, and the integrals
themselves that appear in equation (C2) are de-
pendent only on the size of the (m,n)™ zone and
the relative axial and radial positions of dV at

;Bi, ; with respect to the (m,n)™ toroidal gas zone.
The integration of the integrals that appear in
equation (C2) is carried out numerically by divid-
ing the zone cross section into a partition of small
rectangles (Af, An) and then summing the inte-
grands over this partition. Thus, the triple
volume integral that appears in equation (2) be-
comes a double integral over the surface of the
zone cross section.

It is convenient to calculate the results in the
following manner. Define

f f £F(s)dt dn

= _ mn

T n="m where —1/2<{Z<1/2
: f f F($)dt dy

(C3)

and

| f nFE)dt dn
T n = —————  where —1/2<7<1/2
" f f F$)dt dy

(C4)

Again, z,, , and 7, , are functions only of the size
of the (m,n)™ zone and the relative position of dV’
-

at R, ; with respect to the (m,n)™ zone. With
the use of these definitions, the heat absorbed at
dV due to emission from the (m,n)™ zone is given by

5 - —
ﬁza [(1—Z—F)T% »+ 7T 21,

+7Th e [[£Ddg dn (C3)

Equation (C5) is then used to evaluate the gas-
zone to gas exchange integrals, which appear in
equation (2), in terms of the gas-zone cross-sec-
tional center temperatures.
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